• Felipe Bonow Soares Universidade Federal do Rio Grande do Sul



Disinformation, Political Discussion, Twitter


Disinformation is a worldwide problem and has been a key scholarship in the last few years. This paper contributes to the ongoing discussion on how disinformation spread on social media. This study uses a mixed-methods approach (Social Network Analysis, Connected Concept Analysis and Content Analysis) to analyze four political discussions on Twitter. The results show a structure of asymmetric polarization, in which one group (that supported Bolsonaro in the 2018 Brazilian elections) is strongly associated with disinformation spread. In addition, this study identifies a collective dynamic in disinformation spread as the volume of disinformation floats similarly for different levels of users depending on the context of the discussion analyzed. Based on these results, the idea of “systematic disinformation” is discussed.

Biografia do Autor

Felipe Bonow Soares, Universidade Federal do Rio Grande do Sul

Doutor em Comunicação e Informação pela Universidade Federal do Rio Grande do Sul (Porto Alegre/Brasil). E-mail:


ALLCOTT, Hunt; BOXELL, Levi; CONWAY, Jacob C.; GENTZKOW, Matthew; THALER, Michael; YANG, David Y. Polarization and Public Health: Partisan Differences in Social Distancing during the Coronavirus Pandemic (Working Paper No. 26946; Working Paper Series). National Bureau of Economic Research. 2020. DOI:

ALLCOTT, Hunt; GENTZKOW, Matthew. Social Media and Fake News in the 2016 Election. Journal of Economic Perspectives, v. 31, n. 2, p. 211–236, 2017.

BASTOS Marco T.; MERCEA, Dan. The Brexit Botnet and User-Generated Hyperpartisan News. Social Science Computer Review, v. 37, n. 1, p. 38–54, 2019. DOI:

BASTOS, Marco Toledo; RAIMUNDO, Rafael Luis Galdini; TRAVITZKI, Rodrigo. Gatekeeping Twitter: message diffusion in political hashtags. Media, Culture & Society, v. 35, n. 2, p. 220-270, 2013.

BENKLER, Yochai; FARIS, Robert; ROBERTS, Hal. Network Propaganda: Manipulation, disinformation, and radicalization in American politics. New York: Oxford University Press, 2018.

BLONDEL, Vincent D.; GUILLAUME, Jean-Loup; LAMBIOTTE, Renaud; LEFEBVRE, Etienne. Fast unfolding of communities in large networks. physics.soc-ph, 2008. Disponível em:

BRUNS, Axel; BURGESS, Jean E. The use of Twitter hashtags in the formation of ad hoc publics. In: Proceedings of the 6th European Consortium for Political Research (ECPR) General Conference 2011, University of Iceland, Reykjavik, 2011.

CALVILLO, D. P.; ROSS, B. J.; GARCIA, R. J. B.; SMELTER, T. J.; RUTCHICK, A. M. Political Ideology Predicts Perceptions of the Threat of COVID-19 (and Susceptibility to Fake News About It). Social Psychological and Personality Science, v. 11, n. 8, p. 1119-1128, 2020.

DAS, A.; SCHROEDER, R. Online disinformation in the run-up to the Indian 2019 election. Information, Communication & Society. Advance online publication, 2020. DOI:

FALLIS, Don. What Is Disinformation?. Library Trends, v. 63, n. 3, p. 401-426, 2015.

FREELON, Deen; LOKOT, Tetyana. Russian Twitter disinformation campaigns reach across the American political spectrum. The Harvard Kennedy School (HKS) Misinformation Review, 2020. DOI:

GIGLIETTO, Fabio; RIGHETTI, Nicola; ROSSI, Luca; MARINO, Giada. It takes a village to manipulate the media: coordinated link sharing behavior during 2018 and 2019 Italian elections. Information, Communication & Society, v. 23, n. 6, p. 867-891, 2020. DOI: 10.1080/1369118X.2020.1739732.

GREEN, M.; MUSI, E.; ROWE, F.; CHARLES, D.; POLLOCK, F. D.; KYPRIDEMOS, C.; MORSE, A.; ROSSINI, P.; TULLOCH, J.; DAVIES, A.; DEARDEN, E.; MAHESWARAN, H.; SINGLETON, A.; VIVANCOS, R.; SHEARD, S. Identifying how COVID-19-related misinformation reacts to the announcement of the UK national lockdown: An interrupted time-series study. Big Data & Society, 2021. DOI:

GRUZD, Anatoliy; MAI, Philip. Going viral: How a single tweet spawned a COVID-19 conspiracy theory on Twitter. Big Data & Society, v. 7, n. 2, p. 1-9, 2020.

HAN, J.; CHA, M.; LEE, W. Anger contributes to the spread of COVID-19 misinformation. Harvard Kennedy School (HKS) Misinformation Review, 2020. DOI:

HAUPT, M. R.; LI, J.; MACKEY, T. K. Identifying and characterizing scientific authority-related misinformation discourse about hydroxychloroquine on twitter using unsupervised machine learning. Big Data & Society, 2021. DOI:

HIMELBOIM, Itai; SMITH, Marc A.; RAINIE, Lee; SCHNEIDERMAN, Ben; ESPINA, Camila. Classifying Twitter Topic-Networks Using Social Network Analysis. Social Media + Society, p. 1-13, jan./mar. 2017. DOI:

IOSIFIDIS, P.; NICOLI, N. . The battle to end fake news: A qualitative content analysis of Facebook announcements on how it combats disinformation. International Communication Gazette, v. 82, n. 1, p. 60–81, 2020. DOI:

KRIPPENDORFF, Klaus. Content Analysis: An Introduction to Its Methodology. California, CA: Sage Publications, 2013.

LARSSON, Anders Olof. News Use as Amplification – Norwegian National, Regional and Hyperpartisan Media on Facebook. Journalism & Mass Communication Quarterly, v. 96, p. 3, 2019a. DOI:

LARSSON, Anders Olof. ‘Coherent clusters’ or ‘fuzzy zones’ – Understanding attention and structure in online political participation. First Monday, v. 24, n. 8, 2019b. DOI:

LINDGREEN, Simon. Introducing Connected Concept Analysis: A network approach to big text datasets. Text&Talk, v. 36, n.3, p. 341–362, 2016. DOI:10.1515/text-2016-0016.

LINDGREEN, Simon; PALM, Fredrik. Textometrica Service Package, 2011. Disponível em: Acesso em: 07 abr. 2021.

PAPAKYRIAKOPOULOS, Orestis; SERRANO, Juan Carlos Medina; HEGELICH, Simon. Political communication on social media: A tale of hyperactive users and bias in recommender systems. Online Social Networks and Media, v. 15, n.1, 2020. DOI

PROM, Chris. Tool Report: Social Feed Manager. MAC Newsletter, v. 45, n. 2, Article 9, 2016.

RECUERO, R.; GRUZD, A. Cascatas de “Fake News” Políticas: Um estudo de caso no Twitter. Galáxia, v. 41, 2019. DOI:

RECUERO, Raquel; SOARES, Felipe. O Discurso Desinformativo sobre a Cura do COVID-19 no Twitter: Estudo de caso. E-Compós, 2021. DOI:

RECUERO, Raquel; SOARES, Felipe Bonow; GRUZD, Anatoliy. Hyperpartisanship, Disinformation and Political Conversations on Twitter: The Brazilian Presidential Election of 2018. Proceedings of the International AAAI Conference on Web and Social Media, 14(1), 569-578, 2020.

RECUERO, Raquel; ZAGO, Gabriela; SOARES, Felipe Bonow. Mídia social e filtros-bolha nas conversações políticas no Twitter. In: Encontro Anual da Compós, XXVI, 2017. Faculdade Cásper Líbero, São Paulo. Anais... São Paulo: Compós, 2017a. Disponível em: Acesso em: 25 fev. 2021.

ROSSINI, P.; KALOGEROPOULOS, A. News and (Mis)information about COVID-19 in Brazil. Research Report, Liverpool University, 2021. Disponível em:,Kalogeropoulos,Report,insights,07122020.docx.pdf. Acesso em: 19 jul. 2021.

SANDERSON, Z.; BROWN, M. A.; BONNEAU, R.; NAGLER, J.; TUCKER J. T. Twitter flagged Donald Trump’s tweets with election misinformation: They continued to spread both on and off the platform. Harvard Kennedy School (HKS) Misinformation Review, 2021. DOI:

SOARES, Felipe Bonow; RECUERO, Raquel; ZAGO, Gabriela. Influencers in Polarized Political Networks on Twitter. In: Proceedings of the International Conference on Social Media & Society, Copenhagen, Denmark (SMSociety), 2018. DOI: 10.1145/3217804.3217909.

SOARES, F. B.; RECUERO, R. Hashtag Wars: Political Disinformation and Discursive Struggles on Twitter Conversations During the 2018 Brazilian Presidential Campaign. Social Media + Society, 2021. DOI:

TANGCHAROENSATHIEN, V.; CALLEJA, N.; NGUYEN, T.; PURNAT, T.; D’AGOSTINO, M.; GARCIA-SAISO, S.; LANDRY, M.; RASHIDIAN, A.; HAMILTON, C.; ABDALLAH, A.; GHIGA, I.; HILL, A.; HOUGENDOBLER, D.; VAN ANDEL, J.; NUNN, M.; BROOKS, I.; SACCO, P.; DE DOMENICO, M.; MAI, P.; GRUZD, A.; ALAPHILIPPE, A.; BRIAND, S. Framework for Managing the COVID-19 Infodemic: Methods and Results of an Online, Crowdsourced WHO Technical Consultation. J Med Internet Res , 22(6):e19659, 2020. DOI: 10.2196/19659.

USCINSKI, J. E.; ENDERS, A. M.; KLOFSTAD, C. A.; SEELIG, M. I.; FUNCHION, J. R.; EVERETT, C.; WUCHTY, S.; PREMARATNE, K.; MURTHI, M. N. Why do people believe COVID-19 conspiracy theories? Harvard Kennedy School (HKS) Misinformation Review, 2020. DOI:

WASSERMAN, Stanley; FAUST, Katherine. Social Network Analysis: Methods and Appliccations. Cambridge: Cambridge University Press, 1994.