APPLICATION OF MACHINE LEARNING IN THE SEGMENTATION OF CUSTOMERS ADOPTING OPEN FINANCE IN BRAZIL

Autores

  • Felipe Lima de Holanda Universidade Católica de Brasília
  • Paulo Fernando Marschner Universidade Católica de Brasília https://orcid.org/0000-0003-0847-2638
  • Hércules Antônio do Prado Universidade Católica de Brasília

DOI:

https://doi.org/10.25112/rgd.v22i2.4263

Palavras-chave:

Machine Learning, Open Finance, Financial Institution, Marketing

Resumo

This study aimed to apply machine learning techniques to identify the profile of customers most likely to adopt Open Finance within a major Brazilian financial institution classified as S1 by the Central Bank of Brazil, meaning it holds assets equal to or greater than 10% of the national GDP or has international relevance. The research employed real, individual-level data, enabling the development of robust predictive models with high practical applicability. Five techniques widely recognized in the literature were evaluated: Random Forest, Support Vector Machine (SVM), Decision Tree, Logistic Regression, and XGBoost. Among the models tested, XGBoost demonstrated the best performance, achieving an AUC of 0.90 and an Accuracy of 0.82. The most relevant predictor of Open Finance adoption was the customer’s digital profile, followed by individuals with income up to R$2,000.00 and/or investments up to R$5,000.00, and customers aged over 64. These findings offer valuable insights for financial institutions and policymakers by highlighting the importance of segmented communication strategies and digital inclusion.

Biografia do Autor

Felipe Lima de Holanda, Universidade Católica de Brasília

Mestre em Governança, Tecnologia e Inovação pela Universidade Católica de Brasília (Brasília/Brasil). E-mail: felipelhol@gmail.com.

Paulo Fernando Marschner, Universidade Católica de Brasília

Doutor em Administração pela Universidade Federal de Santa Maria (Santa Maria/Braisl). Professor da Universidade Católica de Brasília (Brasília/Brasil). Email: paulofernandomarschner@hotmail.com

Hércules Antônio do Prado, Universidade Católica de Brasília

Doutorado em Computação pela Universidade Federal do Rio Grande do Sul (Porto Alegre/Brasi). Professor da Universidade Católica de Brasília (Brasília/Brasil). Email: hercules@p.ucb.br

Downloads

Publicado

2025-11-06

Como Citar

Holanda, F. L. de, Marschner, P. F., & Prado, H. A. do. (2025). APPLICATION OF MACHINE LEARNING IN THE SEGMENTATION OF CUSTOMERS ADOPTING OPEN FINANCE IN BRAZIL. Revista Gestão E Desenvolvimento, 22(2), 27–51. https://doi.org/10.25112/rgd.v22i2.4263